
 |
 |
 (\ |
 . ` ' {(((-](8 |
 ' (/ |
 `. |
 . ANAGALLIS |
 `. |
 . A PROGRAM FOR PARSIMONY ANALYSIS |
 , OF CHARACTER HIERARCHIES ' | '
 . \ ^ /
 ' `---[x]---'
 ` . _._ ,'/°-°\`.
 ` . _ / \ _ / | | \
 , .' \ / `.
 . , ' ` . \ _.[o]._ /
 ` . . / | \
 __/ __/
 ' '

 v0.998 beta 16 April 2018
 provided as is and without warranty of any kind
 Jan De Laet, Gothenburg Botanic Garden

 This documentation dump was generated with command
 'help dump of anagallis_v0.998_beta.doc w80'

 It is formatted to view with a non-proportional font
 and 80 characters per line

 __
 (\ ,--' `--.
 '>< - ;°-<
 (/ `--.__,.-'

USAGE anagallis [--help][-c][-h][-s][-v] [commands]
=====
 --help Show usage information and program options, and exit
 -c Start the program with context-sensitive enabled (as if command
 'program set context =' ('psc =') is executed)
 -h Show usage information and program options, and exit
 -s Suppress display of program header at the start of an interactive
 session
 -v Show program version and exit
 commands A command sequence as it would be entered from the program prompt
 (use ';' as command separator). To pass the commands properly,
 characters with special meaning in the shell from which the program
 is called (such as ';' or '*' in most shells) must be escaped. It
 mostly suffices to put the sequence between single quotes.

anagallis v0.998 beta – documentation – 1/41

After the command sequence is executed, the program prompt is displayed. To
execute commands in file 'fname', put command 'script execute start fname'
('sestafname') in the command sequence. Full batch mode can be achieve by
including command 'program quit' ('pq') in the command sequence or in the
command file.

A list of known bugs and issues is maintained at www.anagallis.be/anagallis

Use command 'help summary' ('hs') for an overview of commands and help topics
('hsc' for just commands, 'hst' for just topics), 'help dump f fname' ('hd f
fname') for a dump of all documentation to file 'fname', 'help command - help'
('hc-h' or '?h') for more information about the help command.

Command 'program set context =' ('psc=') enables context sensitive help.

Some help commands to get more information about how to work with character
hierarchies:
 * read character data '? crn'
 * define character hierarchies '? cps'
 * search for optimal trees '? tseam'
 * list summary scores of character hierarchies '? csc'
 * plot character hierarchy optimizations, with score details '? cdp'

OVERVIEW OF HELP TOPICS AND COMMANDS
====================================

> name, shortest unambiguous abbreviation, short description

Help topics

 theory th Theory and background
 general g General information
 command_structure gc Command structure
 tree_buffer gt Tree buffer
 input i Input
 native inn anagallis data formats
 import ii Importing other data formats
 tntmode tn TNT mode
 references r References

Regular commands

 " " echo the input until an end-of-command character
 # # skip input until the end of the input line
 > > provide context-sensitive help (only available
 from the command prompt under 'program set context
 =' or 'psc=')
 ? ? shorthand for 'help command -': use '?xyz' for
 basic help about command 'xyz'
 characters c current number of characters and terminals; has
 optional subcommands to do stuff with characters
 diagnose cd show character state optimizations on tree nodes;
 requires a subcommand
 plot cdp show tree plots of character state optimizations
 tabulate cdt show tables of character state optimizations
 properties cp set/show basic character properties or show

anagallis v0.998 beta – documentation – 2/41

 derived character properties; requires a
 subcommand
 minmax cpm list minimum and maximum number of steps for all
 characters outside character hierarchies
 set cps set/show basic character properties (defaults:
 prior weight 1, active, non-additive, not part of
 a character hierarchy)
 read cr read character data; requires a subcommand (use
 command 'import' to import TNT or nexus character
 data)
 alphanumeric cra read character data with up to 30 regular
 character states coded as 0-9 and a-t (or A-T)
 numeric crn read character data with up to ten regular
 character states coded as 0-9
 score csc a summary of the scores of all characters and
 character hierarchies on one or more trees
 show csh show the current dataset
 help h show basic usage information and program options;
 has optional subcommands to get more detailed
 information
 command hc show information about a specific regular command
 dump hd show all built-in program documentation
 summary hs overview of available commands and/or help topics
 topic ht get information about a specific help topic
 import i import data from other file formats; requires a
 subcommand
 nexus in execute a nexus datafile (supported nexus subset
 still empty in this version...)
 tnt it execute a TNT datafile (limited support for a tiny
 subset of TNT commands)
 log l name and status of log file, if there is one; has
 optional subcommands
 pauze lp suspend output to the logfile
 resume lr resume output to the logfile
 start lsta open a log file (append mode by default)
 stop lsto close the current logfile
 optimality o set/show optimality criterion; requires a
 subcommand
 set os overview of settings that relate to the optimality
 criterion; has optional subcommands
 deviation osd set/show allowed deviation from optimality in tree
 searches and tree buffer cleaning
 searchmode oss set/show search mode: look for best (=, default)
 or worst (-) trees
 program p quit the program or set/show general settings;
 requires a subcommand
 quit pq quit the program
 set ps overview of general settings; has optional
 subcommands
 context psc set/show if context-sensitive help (command '>')
 is available from the command line (=) or not (-,
 default)
 longlists psl set/show if lists of command completions are
 multilevel (=) or not (-, default)
 randomseed psr set/show seed for generator of pseudorandom
 numbers
 shortcommands pss set/show if command abbreviations are allowed (=,
 default) or not (-)
 tntmode pst set/show if TNT mode is on
 unicode psu set/show if tree plotting can use multibyte UTF-8

anagallis v0.998 beta – documentation – 3/41

 characters (=, default) or not (-)
 script s overview of open script files; has optional
 subcommands
 execute se overview of script files that are opened for
 execution; has optional subcommands
 pauze sep temporarily suspend execution of current script
 file and get interactive input
 resume ser resume reading from the current script file that
 is open for execution
 start sesta open a script file and start executing its
 commands
 stop sesto close the current script file that is open for
 execution
 record sr name and status of the file that is open for
 recording commands, if there is one; has optional
 subcommands
 pauze srp temporarily suspend writing to the current file
 for recording commands
 resume srr resume recording commands to the script file for
 recording
 start srsta open a file for recording commands (append mode by
 default)
 stop srsto close the current file for recording commands
 trees t current number of trees in memory; has optional
 subcommands to do stuff with trees
 consense tc calculate consensus trees; requires a subcommand
 majority tcm majority rule consensus tree
 strict tcs strict consensus tree
 read trr read trees in parenthetical notation (use command
 'import' to import TNT or nexus trees)
 score tsc list the score of one or more trees
 search tsea search trees; requires a subcommand
 mult tseam do one or more replicates of building a tree and
 swapping it (spr or tbr)
 swap tseas swap trees from the tree buffer (spr or tbr)
 select tsel manipulate trees in the tree buffer; requires a
 subcommand
 best tselb discard suboptimal trees
 delete tseld discard the trees in the specified tree scopes
 keep tselk discard the trees that are outside the specified
 tree scopes
 unique tselu discard duplicate trees
 set tset overview of tree related settings; has optional
 subcommands
 current tsetc set/show the default tree that is for example used
 when showing trees or character optimizations on
 trees
 outgroup tseto set/show terminal(s) to be used as outgroup(s)
 when showing trees
 width tsetw set/show default maximum width of a line when
 plotting trees
 zerocollapse tsetz set/show the rule for collapsing zero-length
 branches
 show tsh show trees; requires a subcommand
 plot tshp plot trees using character graphics
 write tshw write trees in parenthetical notation

TNT mode commands

> only available in TNT mode (command 'program set tntmode =' or 'pst=') and in

anagallis v0.998 beta – documentation – 4/41

imported TNT files (command 'import tnt' or 'it')
 ccode c set/show character settings
 help h show documentation for the commands that are available in
 TNT mode and in imported TNT files
 nstates n set the TNT default datatype
 program p
 set ps
 tntmode pst set/show if TNT mode is on
 quit q leave TNT mode, go back to regular mode
 tread t read trees in parenthetical notation (numbering of
 terminals starts from 0)
 xread x read alphanumeric or dna data (no support for interleaved
 data)

Use 'help topic - topicname' ('ht-topicname') for more information about topic
'topicname' (topicname can be abbreviated).
Use 'help command - commandname' ('hc-commandname') for more information about
regular command 'commandname' (commandname can be abbreviated).

HELP TOPICS
===========

1 Theory and background

In parsimony analysis, the problems with missing characters or inapplicables
(Maddison 1993) can be overcome by maximizing the amount of similarity that can
be interpreted as homology (De Laet 2005, 2015). This holds for inapplicables as
they arise in the analysis of unaligned sequence data and for inapplicables as
they arise in the classic setting. With inapplicables in the analysis of
unaligned sequence data, the computational complexity of the optimization of
homology on a given tree makes the use of heuristic approximations unavoidable.
With inapplicables as they arise in morphology, however, that computational
complexity is greatly reduced and exact algorithms for the optimal homology
score of a character hierachy with inapplicables becomes practiclly feasible
(well...). Anagallis is a program that provides tree searches with such
algorithms.

The general theoretical framework also applies to inapplicables in the classic
setting (De Laet 2005:110). One way to present it is in terms of homoplasy:
instances of observed similarity, as coded in datasets, that cannot be explained
by inheritance from a common ancestor (Farris 1983, 2008). Identifying the
tree(s) that minimize (independent) homoplasy then amounts to identifying the
trees that maximize the amount of similarity that can be explained by common
ancestry - homology. As such these trees, as hypotheses of genaeology, are
hypotheses of maximum explanatory power. When inapplicables are present, minimal
homoplasy or maximum homology is obtained when the sum of losses and gains an
absence/presence characters, transformations in other characters, and
subcharacters is minimized (De Laet 2005, 2015).

Consider a group of terminals in which each terminal has a tail that is either
red or green. These two features - tails that are red and tails that are green -
can be coded as a character 'tail color', with states 'green' and red'. This
coding entails the assumptions that
* observed similarities in tail color can come about by inheritance and common
ancestry;
* red tails can evolve into green tails and the other way around.
The coding itself implies the that such a transformation happened at least
once.

On trees where this character requires one step, all coded similarities can be

anagallis v0.998 beta – documentation – 5/41

explained by inhertitance and common ancestry and there is no homoplasy. On
trees where this character requires more steps, the amount of homoplasy or
unexplained similarity is equal to the extra number of steps beyond the first
one (hence the expression that homoplasy amounts to extra steps). As an example,
if the character requires two steps on a tree, there is either exactly one
independent similarity in tail redness or exactly one independent similarity in
tail greenness that the tree cannot explain by inheritance and common descent.

Consider inext a group of terminals in which each terminal either has no tail,
or has a tail that is either red or green. Absence and presence of a tail can be
coded in a binary character that codes the distribution of tail absence and
presence. The above character 'tail color' can be retained but now there are
some terminals for which it is not applicable. The first underlying assumption
of this character is still the same: observed similarities in tail color can
come about by inheritance common ancestry. The second one still holds, strictly
speaking, but it is not longer complete: redness of a tail cannot only originate
as a transformation from greenness (and the other way around), it can also just
happen to be color of the tail in the ancestor that acquired a tail. The
character 'tail color' now implies the assumption that at least two such events
- tail transformation or tail gain (including plesiomorphic presence) -
happened.

On trees where this character requires exactly two such events, all coded
similarities in tail color can be explained by inheritance and common descent
and there is no homoplasy in tail color. Here are some of the possiblities
(several more exist):

* one gain of a tail (either red or green) and a subsequent transformation of
tail color;
* symplesiomorphic presence of a red tail that got green in one part of the tree
and got lost in another part.
* two gains of a tail (one red, the other green);
* a gain of a green tail followed by loss of a tail followed by gain of a red
tail;

Note that the last two examples do not entail homoplasy in tail color (all
observed shared tail colors can be explained by inheritance and common descent),
but they do have an unexplained similarity in the absence or presence of a tail.
In the first two examples, all observed similarities in absence and presence of
a tail can be fully explained by common descent within this group of terminals
as well.

On trees where the character 'tail color' requires more than two such events,
not all observed similarities in tail color can be explained by inheritance and
common descent. As an example, if there is a gain of a green tail followed by a
transformation to a red tail, and elsewhere on the tree an independent gain of a
red tail, there is one independent observed similarity in redness that the tree
cannot explain by inheritance and common descent.

So homoplasy or unexplained similarity in tail color cannot only come about by
extra transformations between the two colors, but also by extra gains or losses
of tails. Interestinly, it is not the total number of tail gains and losses that
determines the effect on color homoplasy, but the resulting number of different
regions on the tree in which tails are present. This is the number of
subcharacters (De Laet 2005) of this character. So the number of unexplaned
similarities in tail color on a tree equals its number of color transformations
plus its number of subcharacters minus two, the minimum number of steps required
on any tree.

Trees in which tail color has no homoplasy may nevertheless have homoplasy in

anagallis v0.998 beta – documentation – 6/41

the presence or absence of a tail as such. So to minimize homoplasy in all
features pertaining to the tail, the homoplasy in both characters has to be
minimized simultaneously. But when the two characters are optimized
independently, contradictions may arise: independent minimization of homoplasy
in tail color may for example imply tail presence at inner nodes that lack a
tail when homoplasy in the absence/presence character is minimized.

To maximize homology accross a full-blown absence/presence character hierarchy,
it suffices to minimize the sum of gains/losses, transformations, and regions of
applicability (subcharacters) over the constituent characters of that character
hierarchy, subject to the constraint that the overall explanation must be free
of internal contradictions (De Laet 2005, 2015).Anagallis is a computer program
that provides tree evaluation and tree searches with such algorithms.

2 General information

--> Subtopics
 general command_structure gc Command structure
 general tree_buffer gt Tree buffer

General introduction.

2.1 Command structure

Commands are not case-sensitive, options are. Options are parsed from left to
right.

Commands are structured in a hierarchy. Take command 'trees'. By itself, it just
gives the number of trees in the tree buffer. In addition it has a number of
subordinate commands to do all kinds of things with these trees. Command 'trees
select', for example, can be used to manipulate trees in the tree buffer. It
does nothing by itself, but requires a further subcommand.Examples are 'trees
select best' to select all optimal trees, or 'trees select unique' to remove
duplicate trees from the tree buffer.
Likewise, 'trees search', the command to search for trees, requires a further
subcommand (trees search mult or trees search swap).
Command 'trees set', as a last example, can be used to set a number of
properties related to trees, or to show the current values of those settings. By
itself, it lists all tree-related settings. With additional subcommands, those
different settings can either be set or displayed individulally. 'Trees set
collapse', for example sets or displays the way in which zero-length branches
are treated. Or 'trees set width' sets the maximum width (in characters) that is
used when trees are displayed using character graphics (trees that are wider are
chopped into fitting pieces).

'help summary' (hs) gives an overview of the full command hierarchy.For
multilevel commands, unambiguous abbreviations for the different levels do not
need white space in between the different levels. Ambiguous abbreviations can be
disambigued by lengthening the abbreviation or by inserting white space (or in
some cases even by shortening the abbreviation). 'Program quit', for example,
can also be entered as 'p q' or as 'pq'.This leads to some subtleties when it
comes to determining the shortest unambiguous abbreviation for a multi-level
command.
The numeric code for the shortest unambiguous abbreviations of, say, a two-level
command is of the following form: 'i[.+]j': an integer i followed by one of the
characters ' ', '.', or '+', followed by an integer j.
The first integer indicates the number of characters that are required for the
top-level command, the second for the subcommand. When the character in between

anagallis v0.998 beta – documentation – 7/41

is ' ', then a shortest unambiguous abbreviation exists that has a space in
between the abbreviations of the two levels (but there might be an alternative
equally short unambiguous abbreviation without a space and with an additional
character from the top-level command). When the character is a '+', the shortest
unambiguous abreviation of the full command consists of the direct juxtaposition
of the indicated abbreviations for the top-level command and the subcommand
(without a blank in between); in addition, no ambiguities will arise if longer
chuncks are used. When the character is a '.', the shortest unambiguous
abreviation of the full command still consists of the direct juxtaposition of
the indicated abbreviations for the top-level command and the subcommand, but
ambiguities will arise for some larger chunks of the top-level command.

It can happen that there are multiple shortest abbreviations. In those cases,
and when not using numeric codes, the abbreviation shown is always the one that
does not contain spaces.

No blanks are required to separate commands from their options or to separate
different options.

Options and commands are case-insensitive, filenames are case-sensitive or not,
depending on the underlying operating system.
Filenames are not allowed to contain blanks, irrespective of the underlying
operating system. White space is used to separate a filename argument from
subsequent options.
Likewise, names of terminals are not allowed to contain blanks (and white space
is used to separate a terminal name from character data when reading data
matrices).Names of terminals are case_sensitive.

2.2 Tree buffer

The tree buffer always reflects the current character settings (command
'characters properties set') and the current setting of collapsing mode for
zero-length branches (command 'trees set zerocollapse') (using a lazy
re-evaluation approach). So by changing any of these, a tree buffer with no
duplicate trees may end up with duplicate trees. Or a tree buffer in which all
trees have the same score may end up with trees of different scores.

3 Input

--> Subtopics
 input native inn anagallis data formats
 input import ii Importing other data formats

3.1 Anagallis data formats

To read character matrices: see command 'characters read'. To set character
properties (weights, additive/non-additive, ...) and to define character
hierarchies: see command 'characters properties set'. To read trees: see command
trees read.

3.2 Importing other data formats

See command 'import' and its subcommands 'import tnt' and 'import nexus' (but
nexus import is not supported yet). More information about support for TNT can
be found in section 'tntmode'.Importing other data formats: currently only TNT

anagallis v0.998 beta – documentation – 8/41

data files.

4 TNT mode

In addition to its native mode, anagallis has a TNT mode, a mode that partially
supports a tiny subset of TNT commands (Goloboff et al. 2008). Use command
'program set tntmode' ('pst') to toggle between both modes. The command prompt
indicates which mode is on: in TNT mode it has a 't'. TNT mode is also
implicitly entered when importing a TNT file with command 'import tnt' ('it').

The idea of TNT mode is to be able to read files with data matrices in TNT
format. Commands that are currently (partially) supported are 'ccode', 'help',
'nstates', 'xread', and 'quit' (the last one as a synomym for 'program set
tntmode -' or 'pst-'. An overview of the degree to which they are supported is
obtained by entering 'help*' in TNT mode.

Shortest unambiguous abbreviations are determined on the basis of this set of
supported commands. So, differently as in TNT, 'q' means 'quit', not
'qcollapse'.

Commands that are not supported (or plain wrong) are skipped with appropriate
warnings (they are flagged as invalid commands) but don't trigger errors.
Unsupported options of partially supported commands (as available in TNT version
1.1) are flagged as unsupported options but don't trigger errors either. So in
both cases anagallis keeps reading a TNT datafile rather than closing it with an
error message.

Data sets, character codes, and trees in the tree buffer persist accross mode
changes. So you can read a matrix in regular mode, change its character settings
in TNT mode, and finally go back to analyze the data regular mode. Just switch
between counting from one and counting from zero when doing so.

Changes of the default datatype for TNT (TNT command 'nstates') do not persist
accross different TNT files or different TNT mode sessions.

5 References

Brazeau, M. D., Guillerme T., Smith, M.R. 2017. Morphological phylogenetic
analysis with inapplicable data. BioRxiv preprint first posted online October
26, 2017. doi: http://dx.doi.org/10.1101/209775.

Coddington and Scharff 1994. Problems with zero-length branches. Cladistics 10:
415-423.

De Laet, J. 2005. Parsimony and the problem of inapplicables in sequence data.
Pp. 81-116 in Albert, V.A. (ed.) Parsimony, phylogeny and genomics. Oxford
University Press, ISBN 0-19-856493-7.

De Laet, J. 2015. Parsimony analysis of unaligned sequence data: maximization of
homology and minimization of homoplasy, not minimization of operationally
defined total cost or minimization of equally weighted transformations.
Cladistics.

De Laet, J. 2017. A note on Brazeau et al.'s (2017) algorithm for characters
with inapplicable data, illustrated with an analysis of their Fig. 3d using
anagallis, a program for parsimony analysis of character hierarchies. Technical
Report, November 5, 2017. DOI: 10.13140/RG.2.2.31309.54245

anagallis v0.998 beta – documentation – 9/41

Farris, J.S. 1983. The logical basis of hylogenetic analysis. In Advances in
Cladistics Vol. 2 (eds. N.I. Platnick, and V.A. Funk), pp. 7-36. Columbia
University Press, New York, New York.

Farris, J.S. 1989. The retention index and the rescaled consistency index.
Cladistics 6: 91-100.

Farris, J.S. 2008. Parsimony and explanatory power. Cladistics 24: 825-847.

Goloboff, P.A, Nixon, K.C, and J.S. Farris 2008. TNT, a free program for
phylogenetic analysis. Cladistics 24: 774-786.

Maddison, W.P. 2003. Missing data versus missing characters in phylogenetic
analysis. Syst. Biol. 42: 576-581.

REGULAR COMMANDS
================

--
Command '"'

> Echo the input until an end-of-command character.

Command double-quote is useful to document script files with information that
gets echoed to the the output of the script, or to insert comments in open log
files. As currently implemented, the command ends when it encounters an
end-of-line or a semi-colon. So there is no way to include a semicolon in the
comment itself.

For comments that do not get echoed to the output, use command '#'.

--
Command '#'

> Skip input until the end of the input line.

Useful to insert comments in script files or to comment out commands in script
files.

To insert comments that are echoed to the output of the script, use command '"'
(double quote).

--
Command '>'

> Provide context-sensitive help (only available from the command prompt under
 'program set context =' or 'psc=').

When context-sensitive help is enabled, the current location in the command
hierarchy is indicated before the command prompt.

Experimental feature. It seems to be working quite well but remains to be
thouroughly tested.

--
Command '?' <commandname>

> Shorthand for 'help command -': use '?xyz' for basic help about command 'xyz'.

anagallis v0.998 beta – documentation – 10/41

> Argument
 commandname: the command name or program option for which help is
 requested (required)

For the basic documentation of command or program option 'xyz', enter '? xyz'
('?xyz'). Use 'help summary c' ('hsc') for a list of command names and their
shortest abbreviations.

--
Command 'characters' (c) {cd, cp, cr, csc, csh}

> Current number of characters and terminals; has optional subcommands to do
 stuff with characters.
> Subcommands
 characters diagnose cd show character state optimizations on tree
 nodes; requires a subcommand
 characters properties cp set/show basic character properties or show
 derived character properties; requires a
 subcommand
 characters read cr read character data; requires a subcommand (use
 command 'import' to import TNT or nexus
 character data)
 characters score csc a summary of the scores of all characters and
 character hierarchies on one or more trees
 characters show csh show the current dataset

--
Command 'characters diagnose' (cd) {cdp, cdt}

> Show character state optimizations on tree nodes; requires a subcommand.
> Subcommands
 characters diagnose plot cdp show tree plots of character state
 optimizations
 characters diagnose tabulate cdt show tables of character state
 optimizations

--
Command 'characters diagnose plot' (cdp) [abcCdDfgijJkKnorstTuvW] <scopes>

> Show tree plots of character state optimizations.
> Options:
 a label the terminals with their names (this is the default; it is
 overwritten when option 'n' is present; this option is useful to
 have terminal names in such cases as well)
 b suppress numbering of internal nodes
 c interpret scopes that follow as characters to include; cannot be
 combined with option 'C'
 C interpret scopes that follow as characters to exclude; cannot be
 combined with option 'c'
 d dry run to set custom defaults: remember all other options in
 this invocation for use with the following invocations in this
 session (with no other options, the built-in defaults are
 restored)
 D dry run to show the current custom defaults
 f fname write output also to file fname (append mode by default)
 i when plotting subtrees that branch at the same level, plot small
 subtrees last, and equally sized non-leaf subtrees sorted
 according to their decreasing numeric code; this option also
 inverses the plot order of leaves that branch at the same level
 j indent increment for each next level in a character hierarchy

anagallis v0.998 beta – documentation – 11/41

 (default 3; minimum 1, maximum 20)
 J add a blank line between each plot header and the plot itself
 g n use alternative ASCII glyph set 1 or 2 for plotting trees (has
 only effect under 'program set unicode -' or 'psu-')
 k condensed output (shorter branches)
 K n truncate terminal names (to a minimum of n characters, n > 0)
 when they would exceed the specified width (option 'W') for
 plotting
 n label the terminals with their numeric code (their sequential
 number in the data matrix; see option 'a' for more information)
 r charnum include all characters from character hierarchy wth main root
 character charnum
 o modifies option 'f': use overwite mode, not append mode
 s sort terminals that branch at same level according to their
 increasing numeric code (default: ascending alphabetical order of
 terminal names)
 t interpret scopes that follow as trees to include; cannot be
 combined with option 'T'; this is the default interpretation of
 scopes
 T interpret scopes that follow as trees to exclude; cannot be
 combined with option 't' or with default scopes
 u unravel statesets of optimizations with different subcharacters
 (results in one tree per character); only (possibly) affects
 characters in character hierarchies
 v verbose (only has effect with character hierarchies)
 W n maximum width (in characters) of a single line (beyond this, the
 tree is broken into subtrees); use -1 for the width of the
 current window (default), 0 to turn off this feature (valid
 values 20 - 5000)
> Argument
 scopes: one or more scopes (character scopes by default, no default scope)

Shows the final state sets of one or more characters on one or more trees. There
is no default for the character(s) to show. The default tree is the current
tree.

Scopes and options may be intermingled. By default, scopes are interpreted as
scopes of characters to include. This default interpretation can be changed with
option 'C' (interpret scopes that follow as characters to exclude), 't'
(interpret scopes that follow as trees to include) and 'T' (interpret scopes
that follow as trees to exclude). Options 'c' and 'C' cannot be combinedi.
Neither can 't' and 'T'.

Polytomies are not optimized as polytomies. Optimizations shown are the ones for
the underlying dichotomous resolutions that the program happened to find first.

When a character that is part of a character hierarchy is specified as a
character to plot, all characters that lead from the main root character of the
hierarchy to that character are automatically included as well. As an example,
consider character hierarchy <1 5 <7 8 9 <10 11 15>>>. Requesting an
optimization plot for character 15 will automatically trigger plots for
characters 1, 7, and 10.

Character optimizations are not plotted in the order in which the characters are
entered in this command, but, with the exception of characters that are part of
a hierarchy, in numeric character order. Characters that are part of a character
hierarchy are plotted as part of that hierarchy under the main root character of
that hierarchy. With option 'v', a reference to that main root character is
added at the numeric position of each character of the hierarchy for which a
plot was requested.

anagallis v0.998 beta – documentation – 12/41

To plot optimizations for a full character hierarchy, all characters of that
hierarchy must be specified in the invocation of this command. Alternatively,
option 'r charnum' can be used, with charnum the number of the main root
character of that hierarchy. With this option, all characters of that hierarchy
are automatically included. It does not change the interpretation of scopes as
set with options 'c', 'C', 't' and 'T.

For each character that is part of a character hierarchy, there is by default
one plot that displays, at each node, the union of all states that are part of
at least one optimal solution for the hierarchy as a whole. These are called the
aggregate final or optimal statesets for that character.

With the option 'u' (for un-aggregate), this single plot may be decomposed into
multiple plots that make it easier to reconstruct individual optimal solutions
for the hierarchy as a whole. The statessets that are shown with this option are
called the non-aggregated statesets. One advantage of this option is that it
allows to output the number of subcharacters and gains/losses or transformations
for each individual plot. As such it provides a refinement of scores provided
witch commands 'trees score' and 'characters score': summing subcharacters,
gains/losses and transformations though any full path through a character
hierarchy ias shown with option 'u' of this command will yield the total score
for that hierarchy. This works quite well for simpler hierarchies but remains
experimental for two reasons:

First, while (programming bugs apart) it is guaranteed that all possible
optimizations will be shown, it is currently not guaranteed that an optimization
will be shown only once. In other words, with option 'u', some optimizations may
be shown multiple times.

Second, for some character hierarchies on some trees, it can happen that there
are distinct regions in a tree that can be optimized separately and that the
program has optimized separately. With option 'u', the optimization for any such
region is then shown in a full treeplot with '[+]' as reconstructed stateset for
the other regions. The '+' serves as a placeholder for the statesets that are
plotted in the plots for those other regions. This is a compact way of
representing such cases, but it complicates the presentation of the results for
non-trivial nested hierarchies, an issue that is not solved in this version. So,
with option 'u', the program may for some nested characters in some character
hierarchies indicate that it is unable to plot the final statesets of the
optimization. This does not mean that they have not been correctly calculated or
that the reported scores are not correct. It is just a complex case of
presentation of hierarchic results that the program can't handle yet. That said,
the aggregated statesets can still be plotted for such cases.

--
Command 'characters diagnose tabulate' (cdt) [cCtT] <scope(s)>

> Show tables of character state optimizations.
> Options:
 c interpret scopes that follow as characters to include; cannot be combined
 with option 'C'
 C interpret scopes that follow as characters to exclude; cannot be combined
 with option 'c'
 t interpret scopes that follow as trees to include; cannot be combined with
 option 'T'; this is the default interpretation of scopes
 T interpret scopes that follow as trees to exclude; cannot be combined with
 option 't' or with default scopes
> Argument
 scopes: one or more scopes (character scopes by default, no default

anagallis v0.998 beta – documentation – 13/41

 character scope)

Arguments and options can be intermingled.

Tabulate the final statesets of reconstructed inner nodes for one or more
characters on the current tree. Use option 't' or option 'T' to select other
trees.

Numbers of inner nodes correspond to the numbers as obtained with command 'trees
show plot'
Polytomies are not optimized (yet). Optimizations shown are the ones for the
underlying dichotomous resolutions that the program happened to find first.

For characters in a character hierarchy, the statesets shown are the aggregate
statesets.

--
Command 'characters properties' (cp) {cpm, cps}

> Set/show basic character properties or show derived character properties;
 requires a subcommand.
> Subcommands
 characters properties minmax cpm list minimum and maximum number of steps
 for all characters outside character
 hierarchies
 characters properties set cps set/show basic character properties
 (defaults: prior weight 1, active,
 non-additive, not part of a character
 hierarchy)

--
Command 'characters properties minmax' (cpm)

> List minimum and maximum number of steps for all characters outside character
 hierarchies.

For a character outside a character hierarchy, the maximum number of steps, max
(its number of steps on a star-tree; g of Farris 1989), is calculated directly
and exactly. The minimum number of steps for such a character, min (m of Farris
1989), is calculated using a single tree build using only those terminals that
have a different state set. This gives correct results for non-additive
characters or when no polymorphic terminals are present. It remains to be
determined if this always works for additive polymorphic terminals.

These numbers can be considered derived or secondary character properties: they
depend on the basic character properties but also on the set of terminals being
considered.

For characters in character hierarchies, no such numbers are provided. For any
character hierarchy of interest, they can be obtained heuristically as follows.

For the minimum numbers, first inacticate all characters except those of that
character hierarchy. Next do a tree search under 'optimality set searchmode ='
('oss=') The score obtained provides the minimal score for the character
hierarchy as a whole. The distribution(s) of this score over the individual
characters of the hierarchy provide(s) the (range of possible) minimum numbers
for these characters.

Likewise, for the maximum numbers, first inacticate all characters except those
of that character hierarchy. Next do a tree search under 'optimality set

anagallis v0.998 beta – documentation – 14/41

searchmode -' ('oss-') The score obtained provides the maximum score for the
character hierarchy as a whole. The distribution(s) of this score over the
individual characters of the hierarchy provide(s) the (range of possible)
miaximum numbers for these characters.

--
Command 'characters properties set' (cps) [/+-[]<>acefnopqv] <character scopes>

> Set/show basic character properties (defaults: prior weight 1, active,
 non-additive, not part of a character hierarchy).
> Options:
 /n set character weight to weight n for the character scopes that
 follow
 + set the character additive for the character scopes that follow
 (see -)
 - set the character non-additive for the character scopes that follow
 (see +)
 [activate the character scopes that follow (see])
] inactivate the character scopes that follow (see [)
 <> define a character hierarchy (see ><)
 >< undefine a character hierarchy (see <>)
 a show the active/nonactive status of all characters
 c show the character hierarchies that are currently defined
 e str str must be 'tnt'; write the character codes as a readable
 statement for TNT (as far as they exist there); this implies a
 renumbering of characters to start counting from zero
 f fname write output also to file fname (append mode by default)
 n show the non-additive/additive status of all characters
 o modify option 'f': use overwrite mode, not append mode
 p show the character weights in use
 q don't show any of the current settings (takes precedence over other
 output modifiers)
 v increase verbosity (up to two levels)
> Argument
 scopes: one or more character scope (no default; scopes can be
 intermingled with options)

This is a multiline command, so it always needs a semicolon (';') to terminate.
Numbering of characters starts from 1 (but see option 'e'). There are two groups
of options:
1. character modifiers such as '+' or '[' that modify the interpretation of
characters in the scopes that follow
2. options such as 'a', 'e', or 'n' that set/modify the output of the command.

By default characters are active, non-additive, and with weight one; and no
character hierarchies are defined. character acivity, additivity and weight can
be changed with the options '[', ']', '+', '-', and '/'

Character scopes and options may be intermingled, and the modifiers that are
active are applied to the scopes as they are read. As with other commands, such
changes get only activated after the whole command finishes without an error (as
triggered; for example, by a non-existing option). An appropriate warning is
shown when nothing gets changed because of such errors.

By default, all current settings (character additivites, weights and activities,
and defined character hierarchies) are displayed in a program readable form
after each run of the command. Option 'q' turns this off. By default, character
additivities, weights, and activities are reported in one statement and in the
most condensed form . This implies that the character scopes that are used will
not necessarily show all characters in order. With one occurrence of option 'v',

anagallis v0.998 beta – documentation – 15/41

characters are reported in order but grouped in scopes as much as possible. With
two occurrences of option 'v', characters are reported individually. When
character hierarchies have been defined, these are always reported separately
from activity, additivity and weight (see below for the meaning of option 'v' in
that case).

Options 'a', 'c', 'n', and 'p' can be used to select what will be shown in the
report as described above. From the moment one of these four is specified, only
the character properties so selected will be shown. When none of these is
specified, the command behaves as if all four are specified.

Outside character hierarchies, the dash character ('-') is treated (and shown)
as missing information ('?'). The possibility to toggle this to treating it as a
separate state is not available. The interpretation of a dash in a character
hierarchy is explained in detail below.

Compared to the ccode statement of programs as Hennig86, Nona or TNT, an
important extension is the possibility to define and undefine character
hierarchies.

To define or specify a character hierarchy, '<' and '>' can be used to set off
levels of (in)applicability. Within each level, the first character that is
specified is the absence/presence character that determines inapplicability
further on. Throughout such a character is referred to as a root characters
because it is at the root of a character (sub)hierarchy. The root character of
the complete hierarchy (the outer or upper level) is called the main root
character of the hierarchy. Within each level, the characters that follow the
root character are called subordinate characters at that level. This includes
root characters of one level down: a root character of a nested level is a
subordinate character one level up. These are called complex subordinate
characters (as opposed to simple subordinate characters).

As an example,

 <1 5 6 <7 8>>

is a character hierarchy with main root character 1. This character codes
absence/presence of some feature. Characters 5, 6, and 7 are subordinate
characters at that level: they code three aspects of that feature where it is
present. Characters 5 and 6 are simple subordinate characters, character 7 is a
complex subordinate character: it is at the root of its own subhierarchy (it
codes absence/presence of a subfeature). Character 8, finally, is subordinate at
that subordinate level and describes some feature of that subfeature.

Root characters can have at most four different state codes:
* a first one denoting absence
* a second one denoting presence
* a third one for inapplicability
* '?' for missing data.

Polymorphisms are not allowed in root characters. The main root character of a
hierarchy, in addition, is not allowed to have inapplicable data. If this would
be the case in an existing dataset, that datset must first manually be augmented
with one or more additional outer levels of applicability. The outer additionl
level can then be used as the main root of the hierarchy.

By default, state code 0 is taken to indicate absence and state code - is taken
to indicate inapplicability. Presence is coded by whatever third state code used
(apart from '?' (but there are some constraints; see below). To let a different

anagallis v0.998 beta – documentation – 16/41

state code denote absence, specify this after the character using a '!' followed
by that other state. To let a different state code denote inaplicability,
specify this after the character using a ':' followed by that other state. So in
root character 7 of hierarchy

 <1 5 6 <7 !1:0 8>>

state code 1 codes absence and state code 0 inapplicability; in character 1 it
is still default state code 0 that codes absence.

In simple subordinate characters in a character hierarchy (characters 5, 6 and 8
in the example), state code '-' is by default taken to indicate inapplicability.
To let a different state code denote inapplicability, specify this after the
character using a ':' followed by that other state. So in

 <1 5 :2 6 <7 8 :0>>

state code 2 denotes inapplicability in character 5 and state code 0 denotes
inapplicability in character 8; in character 6 it is still default state code -
that codes inapplicability.

Polymorphisms that involve inapplicability are not allowed.

In verbose mode (option 'v'), all root characters in the hierarchy will be shown
with their ':' and '!' modifiers. and all simple subordinate characters with
their ':'modifier. In non-verbose mode, these are only indicated where their
values differ from the defaults.

Within the specification of a character hierarchy, the regular code modifiers
and the options that modify output are not allowed, but the modifiers that are
active are applied while reading the specification.

Root character that don't have subordinate characters are allowed (as long as
their observed states can be interpreted as an absence/presence character), but
such trivial hierarchies don't serve any meaningful purpose. From a practical
point of view, they will slow down tree searches. Also note that the unweighted
score of such a a trivial character hierarchy will be one higher than for that
same character outside that trivial character hierarchy. This is so because
subcharacters are only taken into account inside character hierarchies.

Character scopes that span multiple characters are not allowed at the start of a
(sub)hierarchy: root characters must be explicitly specified as a single
character. Character scopes that span multiple characters are allowed for simple
subordinate characters. When such a scope is followed by ':' and a state code,
that state code is taken to denote inapplicability in all characters of the
scope.

A character hierarchy imposes a number of logical constraints on the character
state distributions:

1. When a given terminal has missing data ('?') in a root character, it must
have missing data in all subordinate characters as well. (If it is not known if
a feature is present or not in a terminal, aspects or subfeatures are not known
either).
2. When a given terminal has absence in a root character, all subordinate
characters must have inapplicability for that terminal.
3. When a given terminal has inapplicability in a root character, all
subordinate characters must have inapplicability as well.
4. When a given terminal has presence in a root character, none of the
subordinate characters at that level can have inapplicability (but see below).

anagallis v0.998 beta – documentation – 17/41

When a hierachy specification is submitted, it will only succeed when these
constraints are met. Failure for one of those reasons means that there is an
internal contradiction between the requested hierarchy and the state
distribution of the characters involved. If that's the case, the program will
point out which of these constratnts is not met for which terminal and which
character.

The idea behind this way of specifying character hierarchies is to provide a
flexible way to adapt the specifications to existing datasets without having to
edit these datasets (too much) rather than the other way around. For the same
reason, even if the default values are different, it is not enforced that the
state code for inapplicability (':' modifier) and the state code for absence
('!' modifier) in root characters must be different (when a hierarchy is
properly defined, the program has sufficient information to figure out the
correct interpretation). However, when they are the same, the fourth constraint
is skipped in subordinate root characters because it can no longer be
unequivocally tested

To undefine a character hierarchy, enclose its main root character between '>'
and '<'. So

 '>1<'

undefines the hierarchy of the example.

A character hierarchy can be (in)activated as a whole by (in)activating its main
root character. It is currently not allowed to (in)activate part of a hierarchy.
This is not an intrinsic limitation, but removing it requires some additional
programming that I didn't do yet. As a work-around, the hierarchy can be
undefined and then redefined with the unwanted characters excluded. These can
then be inactivated outside the hierarchy.

Alternatively, the prior weights of the characters to be excluded can be set to
0. This does not require redefinition of the hierarchy but will slow down tree
searches: inactive characters are not optimized during tree searches but
characters that are part of a hierarchy and have weight zero are. (outside
hierarchies, zero-weight characters are not optimized during tree searches). Be
aware that this can have unexpected side effects. If, for example, one would
give zero weight to tail absence/presence with non-zero weight for tail color,
one can end up with an awful lot of tail gains and losses (that each have weight
zero).

To avoid confusion or ambiguity, some additional constraints are imposed when
setting character hierarchies:
state code '-' is not allowed as a regular state code;
'-' for absence in a character (!) is not allowed;
'?' is not accepted as code for inapplicability or as code for absence.

The restriction to allow '-' only to mean inapplicability in character
hierarchies makes it possible to use it unequivocally as a character that
separates subcharacters when showing optimizations of character hierarchies on
trees with commands 'characters diagnose plot' and 'characters diagnose
tabulate'). Whatever state code has been used for inapplicability when defining
a hierarchy (:), these two commands will use '-' to indicate inapplicability in
their output. This makes it easier to interpret the output of these commands,
especially in root characters where inapplicability and absence have been coded
with the same state code.

Characters that are inactive, whether part of a hierarchy or not, are not

anagallis v0.998 beta – documentation – 18/41

optimized during tree searches. Afterwards their optimizations are available for
commands such as 'charactersDIASTEPS' or 'charactersDIAPLOT' though. The same is
true for characters that have weight 0 and are not part of a character group.
Neither are taken into account when collapsing zero-length branches.

--
Command 'characters read' (cr) {cra, crn}

> Read character data; requires a subcommand (use command 'import' to import TNT
 or nexus character data).
> Subcommands
 characters read alphanumeric cra read character data with up to 30 regular
 character states coded as 0-9 and a-t (or
 A-T)
 characters read numeric crn read character data with up to ten
 regular character states coded as 0-9

Support for interleaved data sets and for concatenating multiple data sets is
not available yet: all character data for an analysis have to be in a single
non-interleaved dataset.

After a first data set has been read, it is possible to read a new data set, but
it will replace the original one.

--
Command 'characters read alphanumeric' (cra)

> Read character data with up to 30 regular character states coded as 0-9 and
 a-t (or A-T).

Works mostly as NONA's xread command. Digits 0-9 and letters a-t (not case
sensitive) are available for a total of up to 30 different states. In addition,
'?' is available for missing data and '-' for inapplicable data.

A dash is by default interpreted and shown as missing data ('?'). It only
acquires its special meaning of inapplicable data in character hierarchies (see
command 'characters properties set'

As in Nona, there can be an optional comment between the command name and the
number of characters between the command name, enclosed by single quotes. The
parser of anagallis does not reconize escaped single quotes as such, so make
sure the comment itself does not contain single quotes.

--
Command 'characters read numeric' (crn)

> Read character data with up to ten regular character states coded as 0-9.

Works mostly as NONA's xread command. Digits 0-9 are available for a total of up
to 10 different states. In addition, '?' is available for missing data and '-'
for inapplicable data.

A dash is by default interpreted and shown as missing data ('?'). It only
acquires its special meaning of inapplicable data in character hierarchies (see
command 'characters properties set').

As in Nona, there can be an optional comment between the command name and the
number of characters between the command name, enclosed by single quotes. The
parser of anagallis does not reconize escaped single quotes as such, so make
sure the comment itself does not contain single quotes.

anagallis v0.998 beta – documentation – 19/41

> Examples

 #read the datacharacters read numeric
 '
 Tail example of Maddison (1991).
 Characters 13 and 14 are tail a/p and tail color.
 Maximizing homology, there is no long distance effect of tail color between
the non-homologous tails of A-D and K-N and two trees are obtained.
 '
 14 15
 out 000000000000 0-
 A 111100000011 11
 B 111100000001 11
 C 111100000010 12
 D 111100000011 12
 E 111000000000 0-
 F 110000000000 0-
 G 100000000000 0-
 H 000010000000 0-
 I 000011000000 0-
 J 000011100000 0-
 K 000011110000 12
 L 000011111000 12
 M 000011111100 11
 N 000011111100 11
 ;
 #define the character hierarchy
 characters properties set <13 14>;
 #do a tree search
 trees search mult *5;
 #give the number of trees found
 trees
 #plot all trees
 trees show plot;

--
Command 'characters score' (csc) [tT] <treescopes>

> A summary of the scores of all characters and character hierarchies on one or
 more trees.
> Options:
 t interpret scopes that follow as trees to include; cannot be combined with
 option 'T'; this is the default interpretation of scopes
 T interpret scopes that follow as trees to exclude; cannot be combined with
 option 't' or with default scopes
> Argument
 treescopes: trees to list the character scores of (defaults to the current
 tree)

List the character scores on the trees in the specified tree scopes (default:
current tree). For characters with non-unity prior weight, the score is reported
as prior weight times basic score. The scores of inactive characters are
included in the output of this command (in the overview of all characters they
are put between square brackets).

For a character hierarchy, the total score of the hierarchy is listed for the
main absence/presence character of that hierarchy. For the other characters of
that hierarchy, a placeholder reference to their immediate parent

anagallis v0.998 beta – documentation – 20/41

absence/presence character is provided. This is done because, in general,
character hierarchies have no unique distribution of their total score over
their constituent characters. So in a brief summary as provided here, it only
makes sense to give the score of the full hierarchy.

More detailed indormation about the score of character hierarchies can be
obtained with command 'characters diagnose plot' ('cdp').

--
Command 'characters show' (csh) [abefinoru]

> Show the current dataset.
> Options:
 a show active characters only
 b n set block size to n (insert a space every nth character; default is
 10)
 e str str must be 'tnt' or 'fasta': show the data in TNT or fasta format
 f fname write output also to file fname (append mode by default)
 i show informative characters only
 n no characters, just terminal names
 o modify option 'f': use overwrite mode, not append mode
 r show data as originally read (discard changes such as making a
 character state set continuous for an additive character in a
 polymorphic terminal)
 u use upper case for alphabetical state codes (default: use lower
 case)

--
Command 'help' (h) {hc, hd, hs, ht}

> Show basic usage information and program options; has optional subcommands to
 get more detailed information.
> Subcommands
 help command hc show information about a specific regular command
 help dump hd show all built-in program documentation
 help summary hs overview of available commands and/or help topics
 help topic ht get information about a specific help topic

--
Command 'help command' (hc) [forsw] <- commandname>

> Show information about a specific regular command.
> Options:
 f fname write output also to file fname (append mode by default); implies
 'w80'
 o modify option 'f': use overwrite mode, not append mode
 r include documentation of subcommands (no effect when 's' is
 specified as well)
 s summary (only short description, completions, and list of options
 and arguments, no long description and no examples)
 w numcols set line width (in characters); beyond this, lines are wrapped;
 defaults to the width of the current window
> Argument
 - commandname: a dash followed by the command name or program option for
 which help is requested (required)

For the documentation of command or program option 'xyz', enter 'help command -
xyz' ('hc-xyz'). The dash before the command name is required to disambigue
cases where a command starts with a leter that is also an option of this help
command. When using this command without options, command '? xyz' can be used as

anagallis v0.998 beta – documentation – 21/41

a shorthand for 'help command - xyz'.

By default, the command name can be abbreviated (check command 'program set
shortcommands' to change this). Use 'help summary c' ('hsc') for a list of
command names and their shortest abbreviations.

Values for option 'w' must be in the range 66..10000. When using a w-value
higher than the width of the current window, output will not wrap correctly in
the window. With option 'f', wrapping is by default done at 80 characters (and
not according to the curent window). This default can be changed with option
'w'.

--
Command 'help dump' (hd) [cfilostTuw]

> Show all built-in program documentation.
> Options:
 c dump documentation of regular commands ('c', 'i', 't', 'T', and
 'u' are additive)
 f fname write output also to file fname (append mode by default); implies
 'w80'
 i dump an index of all commands and topics ('c', 'i', 't', 'T', and
 u are additive) (as with command 'help summary')
 l use multilevel lists of command and topic completions
 o modify option 'f': use overwrite mode, not append mode
 s summary (show only show short description, completions, and list
 of options and arguments for the commands)
 t dump topics ('c', 'i', 't', 'T', and 'u' are additive)
 T dump documentation of TNT mode commands ('c', 'i', 't', 'T', and
 'u' are additive)
 u dump program usage and options ('c', 'i', 't', 'T', and 'u' are
 additive)
 w numcols set line width (in characters); beyond this, lines are wrapped;
 defaults to the width of the current window

By default, all built-in documentation is dumped. When at least one of options
'c', 'i', 't', 'T' is present, output follows absence/presence of these three
options.

Values for the option 'w' must be in the range 66..10000. When using a w-value
higher than the width of the current window, output will not wrap correctly in
the window. With option 'f', wrapping is by default done at 80 characters (and
not according to the curent window). This default can be changed with option
'w'.

--
Command 'help summary' (hs) [bcCfilnostTvw]

> Overview of available commands and/or help topics.
> Options:
 b brief: do not include the short descriptions
 c show regular commands ('c', 't' and 'T' are additive)
 C c use character 'c' as field delimiter (useful for creating csv
 output)
 f fname write output also to file fname (append mode by default); implies
 'w80'
 i num number of characters to indent for each next level in the command
 or topic hierarchy (2 by default, 100 at most; at least 0 with
 option 'v', at least 1 otherwise; numbers outside this range are
 set to the appropriate extreme)

anagallis v0.998 beta – documentation – 22/41

 l num number of levels to show (0 stands for all levels; this is the
 default when the option is not present)
 n use numeric codes for shortest unambiguous abbreviations
 o modify option 'f': use overwrite mode, not append mode
 s num change the space between output fields (num is 2 by default, 1 at
 least, and 100 at most; numbers outside this range are set to the
 appropriate extreme)
 t show topics ('c', 't' and 'T' are additive)
 T show TNT mode commands ('c', 't', and 'T' are additive)
 v verbose (spell out full command name at each level)
 w numcols set line width (in characters); beyond this, lines are wrapped;
 defaults to the width of the current window

As long as options 'c', 't', and 'T' are all three absent, 'c' and 't' are the
defaults.

Values for the option 'w' must be in the range 66..10000. When using a w-value
higher than the width of the current window, output will not wrap correctly in
the window. With option 'f', wrapping is by default done at 80 characters (and
not according to the curent window). This default can be changed with option
'w'.

--
Command 'help topic' (ht) [forw] <- topicname>

> Get information about a specific help topic.
> Options:
 f fname write output also to file fname (append mode by default); implies
 'w80'
 o modify option 'f': use overwrite mode, not append mode
 r include subtopics
 w numcols set line width (in characters); beyond this, lines are wrapped;
 defaults to the width of the current window
> Argument
 - topicname: a dash followed by the topic name for which help is requested
 (required)

For the documentation of topic 'xyz', enter 'help topic - xyz' ('ht-xyz'). The
dash before the topic name is required to disambigue cases where a topic starts
with a leter that is also an option of this help command.

By default, the topic name can be abbreviated (check command 'program set
shortcommands' to change this). Use 'help summary t' ('hst') for a list of
topics and their shortest abbreviations.

All help information is rendered in ASCII for the time being, so no diacritics
are available...

Values for option 'w' must be in the range 66..10000. When using a w-value
higher than the width of the current window, output will not wrap correctly in
the window. With option 'f', wrapping is by default done at 80 characters (and
not according to the curent window). This default can be changed with option
'w'.

--
Command 'import' (i) {in, it}

> Import data from other file formats; requires a subcommand.
> Subcommands
 import nexus in execute a nexus datafile (supported nexus subset still

anagallis v0.998 beta – documentation – 23/41

 empty in this version...)
 import tnt it execute a TNT datafile (limited support for a tiny subset
 of TNT commands)

--
Command 'import nexus' (in) <nexusfilename>

> Execute a nexus datafile (supported nexus subset still empty in this
 version...).
> Argument
 nexusfilename: name of the nexus file (required)

Under construction.

--
Command 'import tnt' (it) <tntfilename>

> Execute a TNT datafile (limited support for a tiny subset of TNT commands).
> Argument
 tntfilename: name of the file that contains TNT commands (required)

Use command 'help summary T' ('hsT') to get an overview an overview of supported
TNT commands. These are only available in TNT mode (command 'program set tntmode
=' or 'pst=') and in TNT files that are imported with this command.

More information about these supported TNT commands is available with command
'help' within TNT mode.

--
Command 'log' (l) {lp, lr, lsta, lsto}

> Name and status of log file, if there is one; has optional subcommands.
> Subcommands
 log pauze lp suspend output to the logfile
 log resume lr resume output to the logfile
 log start lsta open a log file (append mode by default)
 log stop lsto close the current logfile

--
Command 'log pauze' (lp)

> Suspend output to the logfile.

--
Command 'log resume' (lr)

> Resume output to the logfile.

--
Command 'log start' (lsta) [nof]

> Open a log file (append mode by default).
> Options:
 n suppress logging of a header with time and date
 f logfilename name of the logfile to open (required, append mode by
 default)
 o open the file in overwrite mode

When a logfile is open, all screen output is also written to the logfile.

anagallis v0.998 beta – documentation – 24/41

This is a genaral logging file that logs output of all commands until it is
pauzed or closed. In addition, several commands have options to specify logging
of their output to a file. Such command-specific logging happens in addition to
this general logging.

--
Command 'log stop' (lsto)

> Close the current logfile.

--
Command 'optimality' (o) {os}

> Set/show optimality criterion; requires a subcommand.
> Subcommands
 optimality set os overview of settings that relate to the optimality
 criterion; has optional subcommands

--
Command 'optimality set' (os) {osd, oss}

> Overview of settings that relate to the optimality criterion; has optional
 subcommands.
> Subcommands
 optimality set deviation osd set/show allowed deviation from optimality
 in tree searches and tree buffer cleaning
 optimality set searchmode oss set/show search mode: look for best (=,
 default) or worst (-) trees

--
Command 'optimality set deviation' (osd) <n>

> Set/show allowed deviation from optimality in tree searches and tree buffer
 cleaning.
> Argument
 n: a non-negative integer

This value is used during swapping (command 'trees search') and when selecting
optimal trees (command 'trees select best'). It has only limited influence while
building initial trees for swapping.

This has consequences that at first may seem counterintuitive. Assume a strongly
structured dataset for which 20 replicates of tree building and swapping (using
command 'trees search mult') all return the same tree of score 100. Next the
deviation from optimality is set to 50 and 20 new replicates also just return
that same tree. This does not necessarily mean that there are no trees of
lengths 101-150. What happens most likely is that the build itself already finds
that tree in all replicates. And because it is already in the tree buffer, it is
not passed on to swapping in the replicates.

The best thing to do then after increasing the deviation and before initiating
new search replicates, is to explicitly swap the trees in the tree buffer
(command 'trees search swap').

When the deviation is decreased, the tree buffer is left as it is. An explicit
invocation of command 'trees select best' is required to make it reflect the new
situation.

When looking for worst trees (see command 'optimality set searchmode'), the
requested level of suboptimality is reported as a negative integer.

anagallis v0.998 beta – documentation – 25/41

--
Command 'optimality set searchmode' (oss) [-=]

> Set/show search mode: look for best (=, default) or worst (-) trees.
> Options:
 = search best trees
 - search worst trees

Looking for worst trees may be useful to get an indication of the spread of
possible tree scores

--
Command 'program' (p) {pq, ps}

> Quit the program or set/show general settings; requires a subcommand.
> Subcommands
 program quit pq quit the program
 program set ps overview of general settings; has optional subcommands

--
Command 'program quit' (pq)

> Quit the program.

Close all open files and quit the program.

--
Command 'program set' (ps) {psc, psl, psr, pss, pst, psu}

> Overview of general settings; has optional subcommands.
> Subcommands
 program set context psc set/show if context-sensitive help (command
 '>') is available from the command line (=)
 or not (-, default)
 program set longlists psl set/show if lists of command completions are
 multilevel (=) or not (-, default)
 program set randomseed psr set/show seed for generator of pseudorandom
 numbers
 program set shortcommands pss set/show if command abbreviations are
 allowed (=, default) or not (-)
 program set tntmode pst set/show if TNT mode is on
 program set unicode psu set/show if tree plotting can use multibyte
 UTF-8 characters (=, default) or not (-)

--
Command 'program set context' (psc) [-=]

> Set/show if context-sensitive help (command '>') is available from the command
 line (=) or not (-, default).
> Options:
 - turn of availability of context-sensitive help command '>'
 = turn off availability of context-sensitive help command '>'

When context-sensitive help is on, commands that have no possible subcommands,
options, and arguments are still terminated by hitting the 'enter' key. Likewise
for commands that only have '-' and '=' as options and for which at least one
option has been provided. In all other cases, commands have to be terminated
explicitly with a semicolon.

anagallis v0.998 beta – documentation – 26/41

Still an experimental feature. It seems to be working quite well but needs to be
thorougly tested.

When context-sensitive help is off, a semicolon is only required for the few
commands that possibly take a long (structured) argument list.

--
Command 'program set longlists' (psl)

> Set/show if lists of command completions are multilevel (=) or not (-,
 default).

Affects the list of command completions that is shown when a command is
specified as an ambiguous abbreviation, with a missing required subcommand, or
with an invalid subcommand. For the completion lists that are used in the help
commands, check the options for those commands.

--
Command 'program set randomseed' (psr) <n>

> Set/show seed for generator of pseudorandom numbers.
> Argument
 n: a non-negative number

Without an argument, the current seed for the pseudorandom number generator is
shown (initially 0 by default). With a non-negative argument n, the seed is set
to n.

The generator used is the implementation of the ISO C function rand() in the C
library that is used. The program uses pseudorandom numbers on such various
occasions as generating a pseudorandom addition sequence to add terminals to a
growing tree or to resample datasets (the latter is not available in this beta).

By setting the seed to a specific value at the start of the program, it is
guaranteed that, say, a tree search that is performed after starting the program
will by default return the same trees every time. This default behavior ensures
reproducability of default searches after program startup but it is not suited
for parallellization of replicates for a given data set by starting a number of
parallel anagallis batch sessions, either manually or script-driven. In such
cases, each parallel invocation has to set its own random seed.

--
Command 'program set shortcommands' (pss) [-=]

> Set/show if command abbreviations are allowed (=, default) or not (-).
> Options:
 = abbreviations allowed (default)
 - abbreviations not allowed

This setting only applies in regular program mode when context-sensitive help is
off (command 'program set context'). It does not apply in TNT mode.

--
Command 'program set tntmode' (pst) [=-]

> Set/show if TNT mode is on.
> Options:
 = switch to TNT mode
 - switch to regular mode

anagallis v0.998 beta – documentation – 27/41

--
Command 'program set unicode' (psu) [=-]

> Set/show if tree plotting can use multibyte UTF-8 characters (=, default) or
 not (-).
> Options:
 = enable unicode characters when plotting trees (default)
 - disable unicode characters when plotting trees (just use ASCII
 characters)

When plotting trees, the program by default uses some UTF-8 encoded unicode
characters that are longer than one byte.

Most terminals properly deal with such characters, but when exporting the output
to a word processor make sure to use a non-proportional font that properly deals
with UTF-8 encoded unicode characters. In openoffice 3.2, for example, font
'Courier 10 Pitch' is problematic but 'FreeMono' is ok.

This command can be used to disable the use of UTF-8 encoded unicode characters,
making the output of the program 100% ASCII.

Note that input is always assumed to be 100% ASCII. This command does not change
that.

--
Command 'script' (s) {se, sr}

> Overview of open script files; has optional subcommands.
> Subcommands
 script execute se overview of script files that are opened for execution;
 has optional subcommands
 script record sr name and status of the file that is open for recording
 commands, if there is one; has optional subcommands

> Examples
 Script files can be opened for execution or for recording commands that are
entered from the command prompt.

--
Command 'script execute' (se) {sep, ser, sesta, sesto}

> Overview of script files that are opened for execution; has optional
 subcommands.
> Subcommands
 script execute pauze sep temporarily suspend execution of current
 script file and get interactive input
 script execute resume ser resume reading from the current script file
 that is open for execution
 script execute start sesta open a script file and start executing its
 commands
 script execute stop sesto close the current script file that is open for
 execution

--
Command 'script execute pauze' (sep)

> Temporarily suspend execution of current script file and get interactive
 input.

anagallis v0.998 beta – documentation – 28/41

--
Command 'script execute resume' (ser)

> Resume reading from the current script file that is open for execution.

--
Command 'script execute start' (sesta) [f]

> Open a script file and start executing its commands.
> Options:
 f fname name of the file that contains anagallis commands to execute
 (required)

Script files for execution can be nested up to 16 levels deep.

--
Command 'script execute stop' (sesto)

> Close the current script file that is open for execution.

--
Command 'script record' (sr) {srp, srr, srsta, srsto}

> Name and status of the file that is open for recording commands, if there is
 one; has optional subcommands.
> Subcommands
 script record pauze srp temporarily suspend writing to the current file
 for recording commands
 script record resume srr resume recording commands to the script file
 for recording
 script record start srsta open a file for recording commands (append mode
 by default)
 script record stop srsto close the current file for recording commands

When there is an open unsuspended script file for recording commands to, all
commands that are entered from the command prompt (or supplied with the program
invocation) are written to that file. Command abbreviations are expanded before
doing so. Commands that are read from a scriptfile are not included. Useful to
keep a history of an interactive session, to edit/replay the session later on,
or to expand abbreviated commands.

--
Command 'script record pauze' (srp)

> Temporarily suspend writing to the current file for recording commands.

--
Command 'script record resume' (srr)

> Resume recording commands to the script file for recording.

--
Command 'script record start' (srsta) [fon]

> Open a file for recording commands (append mode by default).
> Options:
 n suppress logging of a header with time and date
 f scriptfilename name of the scriptfile to open ifor recording commands
 (required, append mode by default)
 o open the file in overwrite mode

anagallis v0.998 beta – documentation – 29/41

When a file for recording anagallis commands is open, all commands entered from
the command prompt are written to this file. To enhance readability, all
abbreviated commands are expanded.

This command can also be used to expand abbreviations in an existing scriptfile,
albeit indirectly: first open a file to record to, next paste the contents of
that scriptfile to the command prompt.

KNOWN BUG: when reading trees, the trees themselves don't make it to the
scriptfile.

--
Command 'script record stop' (srsto)

> Close the current file for recording commands.

--
Command 'trees' (t) {tc, trr, tsc, tsea, tsel, tset, tsh}

> Current number of trees in memory; has optional subcommands to do stuff with
 trees.
> Subcommands
 trees consense tc calculate consensus trees; requires a subcommand
 trees read trr read trees in parenthetical notation (use command
 'import' to import TNT or nexus trees)
 trees score tsc list the score of one or more trees
 trees search tsea search trees; requires a subcommand
 trees select tsel manipulate trees in the tree buffer; requires a
 subcommand
 trees set tset overview of tree related settings; has optional
 subcommands
 trees show tsh show trees; requires a subcommand

--
Command 'trees consense' (tc) {tcm, tcs}

> Calculate consensus trees; requires a subcommand.
> Subcommands
 trees consense majority tcm majority rule consensus tree
 trees consense strict tcs strict consensus tree

--
Command 'trees consense majority' (tcm) [abcdDefgikKnosStTW] <scopes>

> Majority rule consensus tree.
> Options:
 a label the terminals with their names (this is the default; it is
 overwritten when option 'n' is present; this option is useful to
 have terminal names in such cases as well)
 b suppress numbering of internal nodes
 c n n is the cutoff percentage (between 0 and 99): ony clades with
 higher occurrence are shown; for building a tree (default, option
 'p' and option 'w'), values below 50 are interpreted as 50 (but
 clades theat occur less frequently are still shown with the option
 'i')
 d dry run to set custom defaults: remember all other options in this
 invocation for use with the following invocations in this session
 (with no other options, the built-in defaults are restored)
 D dry run to show the current custom defaults

anagallis v0.998 beta – documentation – 30/41

 i when plotting subtrees that branch at the same level, plot small
 subtrees last, and equally sized non-leaf subtrees sorted according
 to their decreasing numeric code; this option also inverses the
 plot order of leaves that branch at the same level
 g n use alternative ASCII glyph set 1 or 2 for plotting trees (has only
 effect under 'program set unicode -' or 'psu-')
 i when plotting subtrees that branch at the same level, plot small
 subtrees last, and equally sized non-leaf subtrees sorted according
 to their decreasing numeric code; this option also inverses the
 plot order of leaves that branch at the same level
 k condensed output (shorter branches)
 K n truncate terminal names (to a minimum of n characters, n > 0) when
 they would exceed the specified width (option 'W') for plotting
 n label the terminals with their numeric code (their sequential
 number in the data matrix; see option 'a' for more information)
 f fname write output also to file fname (append mode by default)
 o modifies option 'f': use overwite mode, not append mode
 s sort terminals that branch at same level according to their
 increasing numeric code (default: ascending alphabetical order of
 terminal names)
 S silent (suppress summary statement at start of output)
 t interpret scopes that follow as trees to include; cannot be
 combined with option 'T'; this is the default interpretation of
 scopes
 T interpret scopes that follow as trees to exclude; cannot be
 combined with option 't' or with default scopes
 W n maximum width (in characters) of a single line (beyond this, the
 tree is broken into subtrees); use -1 for the width of the current
 window (default), 0 to turn off this feature (valid values 20 -
 5000)
> Argument
 scopes: one or more tree scopes (defaults to all trees)

Scopes and options may be intermingled.

--
Command 'trees consense strict' (tcs) [abdDfgikKnosStTwW] <scopes>

> Strict consensus tree.
> Options:
 a label the terminals with their names (this is the default; it is
 overwritten when option 'n' is present; this option is useful to
 have terminal names in such cases as well)
 b suppress numbering of internal nodes
 d dry run to set custom defaults: remember all other options in this
 invocation for use with the following invocations in this session
 (with no other options, the built-in defaults are restored)
 D dry run to show the current custom defaults
 i when plotting subtrees that branch at the same level, plot small
 subtrees last, and equally sized non-leaf subtrees sorted according
 to their decreasing numeric code; this option also inverses the
 plot order of leaves that branch at the same level
 g n use alternative ASCII glyph set 1 or 2 for plotting trees (has only
 effect under 'program set unicode -' or 'psu-')
 k condensed output (shorter branches)
 K n truncate terminal names (to a minimum of n characters, n > 0) when
 they would exceed the specified width (option 'W') for plotting
 n label the terminals with their numeric code (their sequential
 number in the data matrix; see option 'a' for more information)
 f fname write output also to file fname (append mode by default)

anagallis v0.998 beta – documentation – 31/41

 o modifies option 'f': use overwite mode, not append mode
 s sort terminals that branch at same level according to their
 increasing numeric code (default: ascending alphabetical order of
 terminal names)
 S silent (suppress summary statement at start of output)
 t interpret scopes that follow as trees to include; cannot be
 combined with option 'T'; this is the default interpretation of
 scopes
 T interpret scopes that follow as trees to exclude; cannot be
 combined with option 't' or with default scopes
 w write the consensus tree in parenthetical notation (and ignore the
 options to tweak plotting; see option 'p')
 W n maximum width (in characters) of a single line (beyond this, the
 tree is broken into subtrees); use -1 for the width of the current
 window (default), 0 to turn off this feature (valid values 20 -
 5000)
> Argument
 scopes: one or more tree scopes (defaults to all trees)

Scopes and options may be intermingled.

--
Command 'trees read' (trr) [a]

> Read trees in parenthetical notation (use command 'import' to import TNT or
 nexus trees).
> Options:
 a the terminals in the trees are indicated with their alphanumeric names,
 not with their sequential number in the current dataset

By default, terminals are indicated using numbers that correspond to the current
dataset. The first terminal in the dataset is terminal 1 (not 0). Use option 'a'
to indicate the terminals with their names.

Parentheses within a tree must match and an outer pair of parentheses is
required (so '((1 2) (3 4))' is ok, '(1 2)(3 4)' not). Different trees within a
single statement must be separated using '*', the last tree must be followed by
a semicolon. This is so because reading trees is a command that can span
multiple lines; so the semicolon is required to indicate that no more input
trees will follow).

Polytomies are internally resolved in a further unspecified way. After being
read, the trees are evaluated according to the current dataset and the current
settings for collapsing zero-length branches (and therefore the number of
terminals and their labels must match). Only those that are not yet in the tree
buffer are retained.

Trees in other formats can be imported with command 'import'.

> Examples
 characters read numeric
 1 4
 a 0
 b 0
 c 1
 d 1
 ;
 trees read (1 2 (3 4)) * (1 4 (2 3));
 trr a
 (a c (b d))

anagallis v0.998 beta – documentation – 32/41

 ;

--
Command 'trees score' (tsc) <treescopes>

> List the score of one or more trees.
> Argument
 tree scopes: trees to show the score of (defaults to the current tree)

List the total (weighted) score of all active characters on the trees in the
specified scopes (defaults to the current tree).

--
Command 'trees search' (tsea) {tseam, tseas}

> Search trees; requires a subcommand.
> Subcommands
 trees search mult tseam do one or more replicates of building a tree and
 swapping it (spr or tbr)
 trees search swap tseas swap trees from the tree buffer (spr or tbr)

--
Command 'trees search mult' (tseam) [*-ahkr] <n>

> Do one or more replicates of building a tree and swapping it (spr or tbr).
> Options:
 * do tbr swapping (spr by default)
 - skip swapping, just build an initial tree
 a use addition sequence 'as is' in first replicate (default: random
 addition sequence)
 h n hold at most n trees for each repetion
 k keep the best trees of each replicate (even if they are not the best
 overall)
 r use a random tree to initiate swapping
> Argument
 n: repeat this n times (n > 0; defaults to 1)

Do a number of repetitions (1 by default) of building a tree and (by default)
swapping it. By default the build is done with a random terminal addition
sequence. With the 'r' option, the build just selects a random tree. With the
'a' option, the build of the first replicate uses the terminal addition sequence
as laid out in the dataset ('as is'). Documentation of details of swap process
(when switching to a wich next tree to swap and things like that): to be done.

During the build stage, character hierarchy definitions are skipped: the/a best
insertion point for the next terminal is searched as if no character
hierarachies have been defined (but the reported score of the full tree that is
obtained does take them into account afterwards). During swapping, defined
character hierarchies are properly taken into account.

Options and argument may be intermingled. When more than one number is
specified, the last one is used.

By default, only the best trees (according to current settings) over all
replicates are retained. With option 'k', the best trees of each replicate will
be retained.

See command 'trees search swap' for some comments on tree buffer maintenance.

anagallis v0.998 beta – documentation – 33/41

During tree searches, the dot ('.') and the comma (',') have special meaning:
pressing the dot key during a tree search ends the current replicate, pressing
the comma key ends the complete search.

--
Command 'trees search swap' (tseas) [*k] <tree scopes>

> Swap trees from the tree buffer (spr or tbr).
> Options:
 * do tbr swapping (spr by default)
 k for each original tree being swapped, keep its best trees (even if they
 are not the best overall)
> Argument
 tree scopes: trees to swap (required)

There is no default tree scope, so at least one tree scope must be specified
(this can be a trival scope of just one tree). Multiple scopes may be
specified. Scopes and options may be intermingled. Use '.' to swap all trees in
memory.

Swapping any single starting tree from the specified scopes proceeds similarly
as swapping the starting tree that results from an initial build for a single
replicate with command 'trees search mult': all new trees that are derived from
the starting tree are themselves recursively swapped before proceeding to the
next starting tree; while swapping a starting tree, the numbers reported refer
to trees derived from that tree, not to all trees in the tree buffer; the best
length reported while swapping a starting tree refers to the best length
starting that starting tree, not from the current globally best length.

A difference with command 'trees search mult' is in tree buffer maintenance.
With command 'trees search mult', the tree buffer is checked and maintained
against the current best global length after each replicate. With command 'trees
search swap', global maintenance of the tree buffer is only performed after all
starting trees have been swapped.

While swapping, the dot ('.') and the comma (',') have special meaning: pressing
the dot key during a tree search ends swapping of the current tree from the
specified tree scops. pressing the comma key ends the complete search.

--
Command 'trees select' (tsel) {tselb, tseld, tselk, tselu}

> Manipulate trees in the tree buffer; requires a subcommand.
> Subcommands
 trees select best tselb discard suboptimal trees
 trees select delete tseld discard the trees in the specified tree scopes
 trees select keep tselk discard the trees that are outside the specified
 tree scopes
 trees select unique tselu discard duplicate trees

--
Command 'trees select best' (tselb)

> Discard suboptimal trees.

--
Command 'trees select delete' (tseld) <scopes>

> Discard the trees in the specified tree scopes.
> Argument

anagallis v0.998 beta – documentation – 34/41

 scopes: one or more tree scopes

--
Command 'trees select keep' (tselk) <scopes>

> Discard the trees that are outside the specified tree scopes.
> Argument
 scopes: one or more tree scopes

--
Command 'trees select unique' (tselu)

> Discard duplicate trees.

When the level of collapsing zero-length branches is increased to a more severe
level (see command 'trees set zerocollapse'), trees that were different before
may no longer be different. This command can then be used to weed out
duplicates.

--
Command 'trees set' (tset) {tsetc, tseto, tsetw, tsetz}

> Overview of tree related settings; has optional subcommands.
> Subcommands
 trees set current tsetc set/show the default tree that is for example
 used when showing trees or character
 optimizations on trees
 trees set outgroup tseto set/show terminal(s) to be used as
 outgroup(s) when showing trees
 trees set width tsetw set/show default maximum width of a line when
 plotting trees
 trees set zerocollapse tsetz set/show the rule for collapsing zero-length
 branches

--
Command 'trees set current' (tsetc)

> Set/show the default tree that is for example used when showing trees or
 character optimizations on trees.

--
Command 'trees set outgroup' (tseto) [a] <terminal number(s) or name(s)>

> Set/show terminal(s) to be used as outgroup(s) when showing trees.
> Options:
 a force interpretation of argument(s) as terminal name(s)
> Argument
 terminal(s): name(s) or numeric code(s) of terminal(s)

When one or more arguments are specified, this command sets the terminal(s) to
be used as outgroup(s) when showing trees. All current tree evaluation
algorithms are unrooted, so outgroups are extraneous to the analyses in the
strict sense.

An outgroup terminal can be specified using its numeric code (its sequential
number in the dataset) or its using its name, but both ways cannot be mixed in a
single call. So if the first outgroup terminal is specified using its numeric
code, all following outgroup terminals must be specified using numeric codes as
well; and if the first outgroup terminal is specified using its name, then all
following outgroup terminals must be specified using their names as well.

anagallis v0.998 beta – documentation – 35/41

By default, numeric arguments are interpreted as numeric terminal codes. But
anagallis allows terminal names to be numbers as well. In that case and if so
required, option 'a' can be used to skip the default interpretation of numbers.

When multiple outgroups are specified, the first terminal is considered the
primary outgroup. When showing any particular tree, the branch that is used for
rooting is the branch that divides that tree in (1) the largest group that
contains only outgroups and that includes the primary outgroup and (2) a group
that also or uniquely contains non-outgroups.

Without arguments, the current settings are shown.

--
Command 'trees set width' (tsetw)

> Set/show default maximum width of a line when plotting trees.

Beyond the requested width, trees are broken into subtrees of appropriate sizes
when plotted. The value as set here can be overwritten with option 'W' of the
various commands that plot trees.

The default is the width of the window in which a tree is plotted. To restore
this default, set the width to -1. Set the width to zero to turn off this
feature (the program actually uses a large built-in maximum then). Lines that
are longer than the current window will then just wrap to the next line or
lines.

--
Command 'trees set zerocollapse' (tsetz) [012]

> Set/show the rule for collapsing zero-length branches.
> Options:
 0 don't collapse branches
 1 consider a branch supported when there is at least one character that may
 have a step on that branch (as 'ambiguous =' in Nona)
 2 consider a branch supported when there is at least one character that
 must have a step on that branch (as 'ambiguous -' in Nona). Default.

See Coddington and Scharff (1994) for background information. As known, the
default rule for collapsing that is used here may occasionally overcollapse
trees. But not to the degree that their strict consensus is affected (the
majority rule consensus tree may be).

Whether or not a branch is collapsed is determined by operations on the final
statesets at both ends of the branch. For a character that is part of a
character hierarchy, those operations are currently done using the aggregeted
statesets. It's probably better to loop over the non-aggregated statesets but
the program doesn't do that yet.

Whether using aggregated statesets or non-aggregated statesets for characers in
character hierarchies, characters with inapplicables pose yet another problem
for collapsing branches. Assume state distribution ((1 -) (- 2)) on tree ((A B)
(C D)). It has two optimizations: a first in which the two inner nodes have
state '-', a second in which neither inner node has state '-'. The first
optimization has two subcharacters and no transformations, the second has one
subcharacter and one transformation. That transformation, between state 1 and
state 2, has to occur on the path between A and D. So it can occur on the branch
leading to A, on the inner branch, or on the branch leading to D. Depending on
where the transformation is assumed to occur, both inner nodes can have state 1

anagallis v0.998 beta – documentation – 36/41

or state 2. This is reflected in their (identical) optimized statesets as
calculated by this program: [12] and [-] non-aggregated, [-12] aggregated. If
support for the inner branch is calculated from such statesets (as is the case
here), that inner branch will be collapsed, even if there exists an optimization
on which a transformation occurs on that branch. That is ok under 'ambiguous -'
but amounts to overcollapsing under 'ambiguous ='.One could alternatively mark
that branch as supported under 'ambiguous -', but doing so leads to what might
be called 'undercollapsing' in more complex cases. As an illustration, assume
state distribution (1 (- (? (- 2)) on tree (A (B (C (D E))). Reasoning as above,
all inner nodes have [-12] as their aggregated optimal stateset. The single
transformation that may be present can now happen on the branch to A, on the
branch to E, or on both inner branches. So these inner branches mght be
considered supported under 'ambiguous -' and left uncollapsed. But they cannot
be suported simultaneously by this character.

When switching to a more severe mode of collapsing, the tree buffer may end up
with duplicate trees. Command 'trees select unique' can be used to remove the
duplicates.

--
Command 'trees show' (tsh) {tshp, tshw}

> Show trees; requires a subcommand.
> Subcommands
 trees show plot tshp plot trees using character graphics
 trees show write tshw write trees in parenthetical notation

--
Command 'trees show plot' (tshp) [abdDfgikKnorsStTW] <scopes>

> Plot trees using character graphics.
> Options:
 a label the terminals with their names (this is the default; it is
 overwritten when option 'n' is present; this option is useful to
 have terminal names in such cases as well)
 b suppress numbering of internal nodes
 d dry run to set custom defaults: remember all other options in this
 invocation for use with the following invocations in this session
 (with no other options, the built-in defaults are restored)
 D dry run to show the current custom defaults
 i when plotting subtrees that branch at the same level, plot small
 subtrees last, and equally sized non-leaf subtrees sorted according
 to their decreasing numeric code; this option also inverses the
 plot order of leaves that branch at the same level
 g n use alternative ASCII glyph set 1 or 2 for plotting trees (has only
 effect under 'program set unicode -' or 'psu-')
 k condensed output (shorter branches)
 K n truncate terminal names (to a minimum of n characters, n > 0) when
 they would exceed the specified width (option 'W') for plotting
 n label the terminals with their numeric code (their sequential
 number in the data matrix; see option 'a' for more information)
 f fname write output also to file fname (append mode by default)
 o modifies option 'f': use overwite mode, not append mode
 r show the trees as fully resolved, using a further undefined
 minimal-score resolution of polytomies
 s sort terminals that branch at same level according to their
 increasing numeric code (default: ascending alphabetical order of
 terminal names)
 S silent (suppress summary statement at start of output)
 t interpret scopes that follow as trees to include; cannot be

anagallis v0.998 beta – documentation – 37/41

 combined with option 'T'; this is the default interpretation of
 scopes
 T interpret scopes that follow as trees to exclude; cannot be
 combined with option 't' or with default scopes
 W n maximum width (in characters) of a single line (beyond this, the
 tree is broken into subtrees); use -1 for the width of the current
 window (default), 0 to turn off this feature (valid values 20 -
 5000)
> Argument
 scopes: one or more tree scopes, defaults to the current tree)

Scopes and options may be intermingled. When no scopes are present, the current
tree is shown.

Default order of subtrees within a set of subtrees that branch at the same level
is as follows: subtrees with less terminals are shown first; equally sized
non-terminal subtrees are sorted by their increasing numeric code (their
sequential order in the dataset). Terminals are shown in increasing alphabetical
order.

Option 's' can be used to sort terminals that branch at the same level according
to their increasing numeric code.

Option 'i' inverses ordering of subtrees that branch at the same level: smaller
subtrees are plotted last, equally sized non-leaf subtrees are sorted according
to their decreasing numeric code, and terminals either according to decreasing
numeric code of the terminals (option 's' specified) or descending alphabetical
order.

The sequential numeric labels of the inner nodes start from one more than the
number of terminals. The sequence is determined using the in-order traversal of
the complete tree with the default ordering of subtrees that branch at the same
level, and starting from 1 more than the number of terminals. These labels keep
being used when changing the default ordering.

--
Command 'trees show write' (tshw) [adDeforRsStTuv] <scopes>

> Write trees in parenthetical notation.
> Options:
 a label the terminals with their names (default: label them with
 their numeric code, their sequential order in the dataset)
 d dry run to set custom defaults: remember all other options in this
 invocation for use with the following invocations in this session
 (with no other options, the built-in defaults are restored)
 D dry run to show the current custom defaults
 e str str must be 'ana' or 'tnt'; write the trees(s) as a readable
 statement for anagallis (ana) or TNT (tnt)
 f fname write output also to file fname (append mode by default)
 o modifies option 'f': use overwite mode, not append mode
 R add a space between all tree elements, not just between terminals
 r show the trees as fully resolved, using a further undefined
 minimal-score resolution of polytomies
 s sort terminals that branch at same level according to their
 increasing numeric code (default: ascending alphabetical order of
 terminal names)
 S silent (suppress summary statement at start of output)
 t interpret scopes that follow as trees to include; cannot be
 combined with option 'T'; this is the default interpretation of
 scopes

anagallis v0.998 beta – documentation – 38/41

 T interpret scopes that follow as trees to exclude; cannot be
 combined with option 't' or with default scopes
 u modifies r: use curly braces for unsupported nodes; no effect for
 TNT export (see option 'e')
 v verbose (include tree scores in output); no effect for TNT export
 (see option 'e')
> Argument
 scopes: one or more tree scopes, defaults to the current tree)

Scopes and options may be intermingled. When no scopes are present, the current
tree is shown.

By default only supported nodes are shown. When such trees are used as input for
anagallis later on, any polytomies that may occur will at that time be
internally resolved using a further unspecified criterion. As a consequence, the
reported scores may then be higher than the scores for the original trees. This
can be avoided with option 'r': the trees are then written as they are
internally resolved. Using such trees as input for anagallis later on will then
restore the original internal resolution of any polytomies that may occur. As a
result, reported tree scores will then be identical to the tree scores of the
original trees.

By default space is only added between terminal names. With option 'R' extra
space is added such that all tree elements (parentheses and terminals) are
separated by a space.

--

TNT MODE COMMANDS
=================

These are only available in TNT mode (command 'program set tntmode =') and in
imported TNT files (command 'import tnt').

--
TNT mode command 'ccode' (c) [+-[]/!()=]

> Set/show character settings.
> Options:
 + set the character additive for the following scopes (see -)
 - set the character non-additive for the following scopes (see +)
 [activate the following scopes (see])
] inactivate the following scopes (see [)
 /n set prior character weight to weight n for the following scopes
 ! not supported
 (not supported
) not supported
 = not supported

Only the basic code specifiers are supported. The unsupported options are
recognized but then ignored. This enables anagallis to read TNT files that have
ccode statements with these options without flagging an error. Remember to start
counting characters from zero when using this command interactively. The changes
to character codes that are made in TNT mode persist when moving back to native
mode (and the other way around as well).

--
TNT mode command 'help' (h) [+*[]

> Show documentation for the commands that are available in TNT mode and in

anagallis v0.998 beta – documentation – 39/41

 imported TNT files.
> Options:
 + not supported
 * show complete documentation of all commands
 [not supported

By default, only a brief description is provided for each command. Option '*'
gives more information. Use 'help xyz' for help on command 'xyz'.

--
TNT mode command 'nstates' (n) [*&/]

> Set the TNT default datatype.
> Options:
 * not supported
 & not supported
 / not supported

Only 'nstates num n' and 'nstates n' are supported, with n an integer between 1
and 30. The number of available states depend on the value of n: for n up to 8,
ten states 0-9 will be available; for larger n, 30 states are available, coded
as 0-9 and a-t (case insensitive). This is not completely the same as in TNT,
but it does mostly ensure that sufficient states are available when importing
TNT files (in TNT, for n up to 8 there are 8 available states 0-7; for n from 9
up to 16 16 states, and from 17 onwards 32 states).

--
TNT mode command 'program set tntmode' (pst) [=-]

> Set/show if TNT mode is on.
> Options:
 = switch to TNT mode
 - switch to regular mode

--
TNT mode command 'quit' (q)

> Leave TNT mode, go back to regular mode.

--
TNT mode command 'tread' (t)

> Read trees in parenthetical notation (numbering of terminals starts from 0).

Read trees in parentetical notation. This command just reads the basic format of
parenthetical trees: None of TNT's special features are supported or even parsed
correctly (they will flag an error). A further restriction is that terminals
must be identified using their sequential number in the dataset (starting from
0), not by their names. When moving back to native mode, numbering shifts back
to counting from 1 onwards (and likewise the other way around).

--
TNT mode command 'xread' (x) [=*-[!/+>]

> Read alphanumeric or dna data (no support for interleaved data).
> Options:
 = not supported
 * not supported
 - not supported
 [not supported

anagallis v0.998 beta – documentation – 40/41

 ! not supported
 / not supported
 + not supported
 > not supported

TNT's xread options are recognized but then ignored. This enables anagallis to
read basic character data from a TNT xread statement without flagging an error.
These character data remain available when moving back to native mode (works the
other way around as well). Interleaved input is not supported (an error will be
triggered).

--

anagallis v0.998 beta – documentation – 41/41

